
HATCH: Hash Table Caching in Hardware for Efficient Relational Join on FPGA
Behzad Salami (1,2), Oriol Arcas-Abella(1,2) and Nehir Sonmez (1)

(1) Barcelona Supercomputing Center (BSC), Barcelona, Spain.
(2) Universitat Politecnica de Catalunya- BarcelonaTech (UPC), Barcelona, Spain.

Email: {behzad.salami, oriol.arcas and nehir.sonmez}@bsc.es.

Introduction

Moore's Law: Size of data doubles at regular intervals, favoring the rise of
Big Data and the Internet of Things.

Converting Raw Data into meaningful Information: Tools are needed to
manage, organize and process data. Database Management Systems (DBMS)
are the usual tools, for instance MS-SQL, Oracle, PostgreSQL, etc.

Bottlenecks in DBMS: Performance is a main bottleneck, especially in some
operations like Hash Join. Some works report more than 40% of total time for
join operations for TPC-H workloads. (TPC-H is a decision support
benchmark widely used in database world.)

Solution: One solution is offloading the data from the host machine and
accelerating the most time-consuming parts, using hardware devices like
FPGAs. In this solution, time-consuming parts of DBMS are executed in the
FPGA and data is transferred through a high speed interface, e.g. PCI-E. (In
this work, we simulated the accelerator.)

Host

DBMS

DDR RAM

FPGA

Accelerator

Block RAM

PCI-E

Motivation

DDR RAM vs. Block RAM:

In the FPGA-Based hash join, the hash table is usually made in the DDR
RAM and the on-chip RAMs (BRAM) are not considered. Consequently:

– DDR RAM is large enough to make big hash tables, but it is slow.
– Block RAMs are fast, but too small to make big hash tables.

Caching:

Caching (data or instructions) in the CPU world is a widely used technique to
avoid data accesses from the main memory.

IDEA:

In this work, we apply the caching technique to the hash join operation, as it is
one of the most time consuming operations in DBMS. The proposed technique
avoids long latency memory accesses, by utilizing BRAM resources.

Cache Configuration:

Indexing of the cache: It uses the LSB bits
of the hash indexes.

Cache Entry's format: It is same as the
hash table entry's format, plus a tag.

Write into Cache: All the written hash
table entries, in the build phase, and all
the missed entries, in the probe phase, will
be cached in BRAMs, using the direct-
mapped replacement policy.

Build

Engine

Probe

Engine

Cache

(On-chip BRAM)

Hash

Table

(DDR RAM)

FPGA

tag, entry
entry

Hash Table Caching

How does our cache works?

During the hash join (Build & Probe), all the required hash table entries are
looked up in the cache first. If not found, the request is forwarded to the main
hash table in DDR.

Hash Join

Hash Join: The most common implementation of join is hash join. In the
hash join algorithm, the objective is to decrease the search space using a hash
table. To index the table, a hash function is used.

Two Phase Hash Join Engine:
● Build Phase: To build the hash table, using the smaller input table (1).
● Probe Phase: To probe each row of the second table (2) and make the

result table (3).

Perfect hash function: It makes unique
hashes for unique keys.

Hash Collision: It happens when two
different keys have the same hash
indexes. For collision resolution, usually
pointer chaining mechanisms are used.

Finance

Sales

R&D

Marketing

IT

empName Manager

Harry Thomas

George Bob

Mark Katie

David Bob

depName Hash index

Finance 00

Sales 01

R&D 10
empName depName

Harry Sale

George Finance

Mark R&D

David Finance

SELECT * FROM Department, Employee

WHERE Department.depName=Employee.depName

depName Manager

Finance Bob

Sales Thomas

R&D Katie

Employee

Department

Hash Table Result Table

1

2

3

 keys hash function hashes

00

01

10

11

Funded by:

European Union FP7 for AXLE Project, contract number: 318633.

Ministry of Economy and Competitiveness of Spain, contract number: TIN2012-34557.

Simulation Results and Analysis

Simulation Environment:

Tools: Xilinx Vivado 2014.3, Bluespec 2014 (DDR Latency = 32 cycles).

Benchmarks: TPC-h (q03, q10, q12, q13, q14) for different sizes (1g, 10g, 100g).

Experimental Results (cycle numbers and speed up reports):

Cache hit rate ranges from 0% to 65.5%.

Speed up ranges from 1X to 2.8X, compared to baseline (without cache).

1G Dataset 10G Dataset 100G Dataset

Query Baseline Cache Speedup Baseline Cache Speedup Baseline Cache Speedup

q03 330k 330k 1X 50M 17M 2.8X 896M 554M 1.62X

q10 110k 110k 1X 1.1M 1.1M 1X 11M 11M 1X

q12 4.89M 3.13M 1.5X 94M 42M 2.2X 1304M 631M 2.07X

q13 1.53M 1.53M 1X 91M 53M 1.7X 1422M 908M 1.57X

q14 270k 270k 1X 11M 6M 1.9X 350M 275M 1.27X

Analysis Results:

If the hash table is small enough to fit in the cache, then there is no need to access the memory (this happens in most of the 1G dataset benchmarks).

If there is no collision in build phase the accesses to DDR memory can be pipelined. Therefore there will be no speed up using BRAM to cache the hash table.

Consequently the speed up comes from hiding the memory latency in colliding keys, using caching for the hash table entries.

Simulation Results (number of clock cycles for cache-enabled and baseline version, speedup reports)

	Slide 1

